LTE
domingo, 30 de junio de 2013
sábado, 29 de junio de 2013
Introducción LTE
LTE (Long Term Evolution) es un estándar de la norma 3GPP. Definida para unos como una evolución de la norma 3GPP UMTS (3G), para otros es un nuevo concepto de arquitectura evolutiva (4G).
Lo novedoso de LTE es la interfaz radioeléctrica basada en OFDMA para el enlace descendente (DL) y SC-FDMA para el enlace ascendente (UL). La modulación elegida por el estándar 3GPP hace que las diferentes tecnologías de antenas (MIMO) tengan una mayor facilidad de implementación.
Lo novedoso de LTE es la interfaz radioeléctrica basada en OFDMA para el enlace descendente (DL) y SC-FDMA para el enlace ascendente (UL). La modulación elegida por el estándar 3GPP hace que las diferentes tecnologías de antenas (MIMO) tengan una mayor facilidad de implementación.
viernes, 28 de junio de 2013
Historia LTE
El reciente aumento del uso de datos móviles y la aparición de nuevas aplicaciones y servicios como MMOG (Juegos Masivos Multijugador Online), televisión móvil, web 2.0, flujo de datos de contenidos han sido las motivaciones por las que 3GPP desarrollase el proyecto LTE. Poco antes del año 2010, las redes UMTS llegan al 85% de los abonados de móviles. Es por eso que LTE 3GPP quiere garantizar la ventaja competitiva sobre otras tecnologías móviles. De esta manera, se diseña un sistema capaz de mejorar significativamente la experiencia del usuario con total movilidad, que utilice el protocolo de Internet (IP) para realizar cualquier tipo de tráfico de datos de extremo a extremo con una buena calidad de servicio (QoS) y, de igual forma el tráfico de voz, apoyado en Voz sobre IP (VoIP) que permite una mejor integración con otros servicios multimedia. Así, con LTE se espera soportar diferentes tipos de servicios incluyendo la navegación web, FTP, vídeo streaming, Voz sobre IP, juegos en línea, vídeo en tiempo real, pulsar para hablar (push-to-talk) y pulsar para ver (push-to-view).
jueves, 27 de junio de 2013
Características
Alta eficiencia espectral
OFDM de enlace descendente robusto frente a las múltiples interferencias y de alta afinidad a las técnicas avanzadas como la programación de dominio frecuencial del canal dependiente y MIMO.
DFTS-OFDM (single-Carrier FDMA) al enlace ascendente, bajo PAPR, ortogonalidad de usuario en el dominio de la frecuencia.
Multi-antena de aplicación.
Muy baja latencia con valores de 100 ms para el Control-Plane y 10 ms para el User-Plane.
Separación del plano de usuario y el plano de control mediante interfaces abiertas.
Ancho de banda adaptativo: 1.4, 3, 5, 10, 15 y 20 MHz
Puede trabajar en muchas bandas frecuenciales diferentes.
Arquitectura simple de protocolo.
Compatibilidad con otras tecnologías de 3GPP.
Interfuncionamiento con otros sistemas como CDMA2000.
Red de frecuencia única OFDM.
Velocidades de pico:
Bajada: 326,5 Mbps para 4x4 antenas, 172,8 Mbps para 2x2 antenas.
Subida: 86,5 Mbps
Óptimo para desplazamientos hasta 15 km/h. Compatible hasta 500 km/h
Más de 200 usuarios por celda. Celda de 5 MHz
Celdas de 100 a 500 km con pequeñas degradaciones cada 30 km. Tamaño óptimo de las celdas 5 km. El Handover entre tecnologías 2G (GSM - GPRS - EDGE), 3G (UMTS - W-CDMA - HSPA) y LTE son transparentes. LTE nada más soporta hard-handover.
La 2G y 3G están basadas en técnicas de Conmutación de Circuito (CS) para la voz mientras que LTE propone la técnica de Conmutación por paquetes IP (PS) al igual que 3G (excluyendo las comunicaciones de voz).
Las operadoras UMTS pueden usar más espectro, hasta 20 MHz
Mejora y flexibilidad del uso del espectro (FDD y TDD) haciendo una gestión más eficiente del mismo, lo que incluiría servicios unicast y broadcast. Reducción en TCO (coste de análisis e implementación) y alta fidelidad para redes de Banda Ancha Móvil.
OFDM de enlace descendente robusto frente a las múltiples interferencias y de alta afinidad a las técnicas avanzadas como la programación de dominio frecuencial del canal dependiente y MIMO.
DFTS-OFDM (single-Carrier FDMA) al enlace ascendente, bajo PAPR, ortogonalidad de usuario en el dominio de la frecuencia.
Multi-antena de aplicación.
Muy baja latencia con valores de 100 ms para el Control-Plane y 10 ms para el User-Plane.
Separación del plano de usuario y el plano de control mediante interfaces abiertas.
Ancho de banda adaptativo: 1.4, 3, 5, 10, 15 y 20 MHz
Puede trabajar en muchas bandas frecuenciales diferentes.
Arquitectura simple de protocolo.
Compatibilidad con otras tecnologías de 3GPP.
Interfuncionamiento con otros sistemas como CDMA2000.
Red de frecuencia única OFDM.
Velocidades de pico:
Bajada: 326,5 Mbps para 4x4 antenas, 172,8 Mbps para 2x2 antenas.
Subida: 86,5 Mbps
Óptimo para desplazamientos hasta 15 km/h. Compatible hasta 500 km/h
Más de 200 usuarios por celda. Celda de 5 MHz
Celdas de 100 a 500 km con pequeñas degradaciones cada 30 km. Tamaño óptimo de las celdas 5 km. El Handover entre tecnologías 2G (GSM - GPRS - EDGE), 3G (UMTS - W-CDMA - HSPA) y LTE son transparentes. LTE nada más soporta hard-handover.
La 2G y 3G están basadas en técnicas de Conmutación de Circuito (CS) para la voz mientras que LTE propone la técnica de Conmutación por paquetes IP (PS) al igual que 3G (excluyendo las comunicaciones de voz).
Las operadoras UMTS pueden usar más espectro, hasta 20 MHz
Mejora y flexibilidad del uso del espectro (FDD y TDD) haciendo una gestión más eficiente del mismo, lo que incluiría servicios unicast y broadcast. Reducción en TCO (coste de análisis e implementación) y alta fidelidad para redes de Banda Ancha Móvil.
miércoles, 26 de junio de 2013
martes, 25 de junio de 2013
Arquitectura
La interfaz y la arquitectura de radio del sistema LTE es completamente nueva. Estas actualizaciones fueron llamadas Evolved UTRAN (E-UTRAN). Un importante logro de E-UTRAN ha sido la reducción del costo y la complejidad de los equipos, esto es gracias a que se ha eliminado el nodo de control (conocido en UMTS como RNC). Por tanto, las funciones de control de recursos de radio, control de calidad de servicio y movilidad han sido integradas al nuevo Node B, llamado evolved Node B. Todos los eNB se conectan a través de una red IP y se pueden comunicar unos a otros usando el protocolo de señalización SS7 sobre IP. Los esquemas de modulación empleados son QPSK,16-QAM y 64-QAM. La arquitectura del nuevo protocolo de red se conoce como SAE donde eNode gestiona los recursos de red.
lunes, 24 de junio de 2013
Barreras para el despliegue de LTE
Las principales barreras de LTE incluyen la habilidad de los operadores de desarrollar un negocio viable y la disponibilidad de terminales y espectro. Los operadores necesitan que las aplicaciones y los terminales de usuario estén disponibles antes de comprometer el despliegue de tecnologías 4G. Pues los usuarios cambian sus planes basándose en los equipos, los servicios y las capacidades que estos tengan. Adicionalmente, la disponibilidad de espectro también representará una barrera para LTE pues para alcanzar las velocidades prometidas se requieren 20 MHz para el ancho de la portadora y muchos de los operadores no cuentan con el espectro necesario. Aunque se está abriendo nuevo espectro en la banda de 2,6 GHz en Europa y 700 MHz en Estados Unidos y parte de Europa, esto no es suficiente para alcanzar las demandas de LTE. En Europa, Suecia fue el primero en subastar su espectro; los ganadores incluyen TeliaSonera, Telenor, Tele2 y Hi3G. Otros países que planean subastar la banda de 2,6 GHz son Italia, Austria, Inglaterra y los Países Bajos.
domingo, 23 de junio de 2013
Actualidad LTE
Se han previsto las bandas de 700 MHz para América del Norte, 900, 1800 y 2600 MHz para Europa, 1800 y 2600 MHz para Asia y 1800 MHz para Australia. En septiembre del 2010, los operadores CenterNet y Mobyland, de Polonia, anunciaron la puesta en marcha de la primera red LTE comercial con 20 MHz de espectro en la banda de 1800 MHz.
Según el Sector de Normalización de las Telecomunicaciones (UIT), LTE es una 3.9G en el estándar 3GGP porque no llega a los objetivos de la cuarta generación (4G). Por eso, el sucesor previsto para implantar la cuarta generación es LTE Advanced.
Según el Sector de Normalización de las Telecomunicaciones (UIT), LTE es una 3.9G en el estándar 3GGP porque no llega a los objetivos de la cuarta generación (4G). Por eso, el sucesor previsto para implantar la cuarta generación es LTE Advanced.
sábado, 22 de junio de 2013
LTE en España
Los operadores de telefonía móvil ya ofrecen LTE en las capitales de provincia. Además, otras empresas locales comienzan a tener licencias específicas LTE . Yoigo ofrece su servicio 4G LTE en todas aquellas ciudades mayores de 70.000 habitantes, cuyas velocidades teóricas son 75 megas de bajada y 50 de subida, con picos de 40 y 25 megas, respectivamente. El despliegue de la filial de TeliaSonera en España se está produciendo sobre la banda de 1800Mhz, al no tener la operadora asignadas frecuencias mayores (2600Mhz) o menores (800Mhz). Ésta red 4G se comparte con la operadora nacional Movistar, en aquellos sitios donde Movistar no tenga cobertura 4G, al igual que Movistar ofrece su 2G y 3G a Yoigo, en aquellos sitios donde no llega el 2G y 3G propio de Yoigo.
viernes, 21 de junio de 2013
Suscribirse a:
Entradas (Atom)